1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
| class WeightedGraph { constructor() { this.adjacencyList = {}; } addVertex(vertex){ if(!this.adjacencyList[vertex]) this.adjacencyList[vertex] = []; } addEdge(vertex1,vertex2, weight){ this.adjacencyList[vertex1].push({node:vertex2,weight}); this.adjacencyList[vertex2].push({node:vertex1, weight}); } Dijkstra(start, finish){ const nodes = new PriorityQueue(); const distances = {}; const previous = {}; let path = [] //to return at end let smallest; //build up initial state for(let vertex in this.adjacencyList){ if(vertex === start){ distances[vertex] = 0; nodes.enqueue(vertex, 0); } else { distances[vertex] = Infinity; nodes.enqueue(vertex, Infinity); } previous[vertex] = null; } // as long as there is something to visit while(nodes.values.length){ smallest = nodes.dequeue().val; if(smallest === finish){ //WE ARE DONE //BUILD UP PATH TO RETURN AT END while(previous[smallest]){ path.push(smallest); smallest = previous[smallest]; } break; } if(smallest || distances[smallest] !== Infinity){ for(let neighbor in this.adjacencyList[smallest]){ //find neighboring node let nextNode = this.adjacencyList[smallest][neighbor]; //calculate new distance to neighboring node let candidate = distances[smallest] + nextNode.weight; let nextNeighbor = nextNode.node; if(candidate < distances[nextNeighbor]){ //updating new smallest distance to neighbor distances[nextNeighbor] = candidate; //updating previous - How we got to neighbor previous[nextNeighbor] = smallest; //enqueue in priority queue with new priority nodes.enqueue(nextNeighbor, candidate); } } } } return path.concat(smallest).reverse(); } }
class PriorityQueue { constructor(){ this.values = []; } enqueue(val, priority){ let newNode = new Node(val, priority); this.values.push(newNode); this.bubbleUp(); } bubbleUp(){ let idx = this.values.length - 1; const element = this.values[idx]; while(idx > 0){ let parentIdx = Math.floor((idx - 1)/2); let parent = this.values[parentIdx]; if(element.priority >= parent.priority) break; this.values[parentIdx] = element; this.values[idx] = parent; idx = parentIdx; } } dequeue(){ const min = this.values[0]; const end = this.values.pop(); if(this.values.length > 0){ this.values[0] = end; this.sinkDown(); } return min; } sinkDown(){ let idx = 0; const length = this.values.length; const element = this.values[0]; while(true){ let leftChildIdx = 2 * idx + 1; let rightChildIdx = 2 * idx + 2; let leftChild,rightChild; let swap = null;
if(leftChildIdx < length){ leftChild = this.values[leftChildIdx]; if(leftChild.priority < element.priority) { swap = leftChildIdx; } } if(rightChildIdx < length){ rightChild = this.values[rightChildIdx]; if( (swap === null && rightChild.priority < element.priority) || (swap !== null && rightChild.priority < leftChild.priority) ) { swap = rightChildIdx; } } if(swap === null) break; this.values[idx] = this.values[swap]; this.values[swap] = element; idx = swap; } } }
class Node { constructor(val, priority){ this.val = val; this.priority = priority; } }
var graph = new WeightedGraph() graph.addVertex("A"); graph.addVertex("B"); graph.addVertex("C"); graph.addVertex("D"); graph.addVertex("E"); graph.addVertex("F");
graph.addEdge("A","B", 4); graph.addEdge("A","C", 2); graph.addEdge("B","E", 3); graph.addEdge("C","D", 2); graph.addEdge("C","F", 4); graph.addEdge("D","E", 3); graph.addEdge("D","F", 1); graph.addEdge("E","F", 1);
graph.Dijkstra("A", "E");
|