graph traversal
What is Graph Traversal? Graph traversal refers to the process of visiting each vertex in a graph.
Types of Graph Traversal
Breadth First Search(BFS)
Depth First Search(DFS)
Breadth First Search(BFS) BFS is an algorithm for traversing Graph data structures. It starts at some arbitrary node of a graph and explores the neighbor nodes(which are at current level) first, before moving to the next level neighbors.
Handling one Special Scenario of BFS
Disconnected Graph
Cannot traverse the graph with BFS. Because the vertecis are disconneted with each other.
Time Complexity - BFS
Time Complexity - O(V+E)
Space Complexity - O(V+E)
Depth First Search(DFS) DFS is an algorithm for traversing Graph data structures. It starts selecting some arbitrary node and explores as far as possible along each edge before backtracking.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 class Graph { constructor(){ this.adjacencyList = {}; } addVertex(vertex){ if(!this.adjacencyList[vertex]) this.adjacencyList[vertex] = []; } addEdge(vertex1, vertex2){ if(this.adjacencyList[vertex1]){ this.adjacencyList[vertex1].push(vertex2); } if(this.adjacencyList[vertex2]){ this.adjacencyList[vertex2].push(vertex1); } } removeEdge(v1, v2){ if(this.adjacencyList[v1].includes(v2)){ this.adjacencyList[v1] = this.adjacencyList[v1].filter( v => v !== v2); } if(this.adjacencyList[v2].includes(v1)){ this.adjacencyList[v2] = this.adjacencyList[v2].filter( v => v !== v1); } } removeVertex(vertex){ while(this.adjacencyList[vertex].length){ const adjacentVertex = this.adjacencyList[vertex].pop(); this.removeEdge(vertex, adjacentVertex); } delete this.adjacencyList[vertex]; } depthFirstRecursive(start){ const result = []; const visited = {}; const adjacencyList = this.adjacencyList; (function dfs(vertex){ if(!vertex) return null; visited[vertex] = true; result.push(vertex); adjacencyList[vertex].forEach(neighbor => { if(!visited[neighbor]){ return dfs(neighbor); } }) })(start); return result; } depthFirstIterative(start){ const stack = [start]; const result = []; const visited = {}; let currentVertex; visited[start] = true; while(stack.length){ currentVertex = stack.pop(); result.push(currentVertex); this.adjacencyList[currentVertex].forEach(neighbor => { if(!visited[neighbor]){ visited[neighbor] = true; stack.push(neighbor); } }) } return result; } breadthFirstIterative(start){ const queue = [start]; const result = []; const visited = {}; let currentVertex visited[start] = true; while(queue.length){ currentVertex = queue.shift(); result.push(currentVertex); this.adjacencyList[currentVertex].forEach(neighbor=>{ if(!visited[neighbor]){ visited[neighbor] = true; queue.push(neighbor); } }) } return result; } } let g = new Graph(); g.addVertex("A") g.addVertex("B") g.addVertex("C") g.addVertex("D") g.addVertex("E") g.addVertex("F") g.addEdge("A", "B") g.addEdge("A", "C") g.addEdge("B","D") g.addEdge("C","E") g.addEdge("D","E") g.addEdge("D","F") g.addEdge("E","F") g.depthFirstRecursive("A") // A // / \ // B C // | | // D --- E // \ / // F
출처 : “Data Structures & Algorithms” by DS GUY