AVL Tree Coding

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
package com.chung;

import java.util.LinkedList;
import java.util.Queue;
import node.*;

public class AVLTree {
BinaryNode root;
public BinaryNode getRoot() {
return root;
}


// Constructor
AVLTree() {
root = null;
}


// Insert values in AVL Tree
void insert(int value) {
root = insert(root, value);
}// end of method


// Helper Method
BinaryNode insert(BinaryNode currentNode, int value) {
// THIS ELSE_IF BLOCK IS BST CONDITION
if (currentNode == null) {
System.out.println("Successfully inserted " + value + " in AVL Tree");
return createNewNode(value);
} else if (value <= currentNode.getValue()) {
currentNode.setLeft(insert(currentNode.getLeft(), value));
} else {
currentNode.setRight(insert(currentNode.getRight(), value));
}

// THIS IS WHERE WE WILL DO AVL SPECIFIC WORK
int balance = checkBalance(currentNode.getLeft(), currentNode.getRight());
if (balance > 1) {
if (checkBalance(currentNode.getLeft().getLeft(), currentNode.getLeft().getRight()) > 0) {
currentNode = rightRotate(currentNode);// LL Condition
} else {
currentNode.setLeft(leftRotate(currentNode.getLeft())); // LR Condition
currentNode = rightRotate(currentNode);
}
} else if (balance < -1) {
if (checkBalance(currentNode.getRight().getRight(), currentNode.getRight().getLeft()) > 0) {
currentNode = leftRotate(currentNode);// RR Condition

} else {
currentNode.setRight(rightRotate(currentNode.getRight()));// RL Condition
currentNode = leftRotate(currentNode);

}
}

if (currentNode.getLeft() != null) {
currentNode.getLeft().setHeight(calculateHeight(currentNode.getLeft()));
}
if (currentNode.getRight() != null) {
currentNode.getRight().setHeight(calculateHeight(currentNode.getRight()));
}
currentNode.setHeight(calculateHeight(currentNode));
return currentNode;

}// end of method


// Helper Method
private BinaryNode leftRotate(BinaryNode currentNode) {
BinaryNode newRoot = currentNode.getRight();
currentNode.setRight(currentNode.getRight().getLeft());
newRoot.setLeft(currentNode);
currentNode.setHeight(calculateHeight(currentNode));
newRoot.setHeight(calculateHeight(newRoot));
return newRoot;
}// end of method


// Helper Method
private BinaryNode rightRotate(BinaryNode currentNode) {
BinaryNode newRoot = currentNode.getLeft();
currentNode.setLeft(currentNode.getLeft().getRight());
newRoot.setRight(currentNode);
currentNode.setHeight(calculateHeight(currentNode));
newRoot.setHeight(calculateHeight(newRoot));
return newRoot;
}// end of method


// Helper Method
private int checkBalance(BinaryNode rootLeft, BinaryNode rootRight) {
if((rootLeft == null) && (rootRight == null)) { //if current node is a leaf node then no need to check balance of its children
return 0;
}else if (rootLeft == null) {
return -1 * (rootRight.getHeight() + 1); // if left node node is not there then simply return right node's
// height + 1
// we need to make it -1 because blank height is considered
// having height as '-1'
} else if (rootRight == null) {
return rootLeft.getHeight() + 1;
} else {
return rootLeft.getHeight() - rootRight.getHeight(); // +1 is not required, as both right and left child
// exits and 1 gets nullified
}
}// end of method


// Calculate height of Node
private int calculateHeight(BinaryNode currentNode) {
if (currentNode == null) {
return 0;
}
return 1 + Math.max((currentNode.getLeft() != null ? currentNode.getLeft().getHeight() : -1),
(currentNode.getRight() != null ? currentNode.getRight().getHeight() : -1));

}// end of method


// creates a new blank new node
public BinaryNode createNewNode(int value) {
BinaryNode node = new BinaryNode();
node.setValue(value);
node.setHeight(0);// Since this is a leaf node, its height is 0
return node;
}// end of method


// Level order traversal of BST
void levelOrderTraversal() {
Queue<BinaryNode> queue = new LinkedList<BinaryNode>();
queue.add(root);
System.out.println("Printing Level order traversal of AVL Tree...");
if (root == null) {
System.out.println("Tree does not exists !");
return;
}
while (!queue.isEmpty()) {
BinaryNode presentNode = queue.remove();
System.out.print(presentNode.getValue() + " ");
if (presentNode.getLeft() != null)
queue.add(presentNode.getLeft());
if (presentNode.getRight() != null)
queue.add(presentNode.getRight());
}
}// end of method


// Deleting a node from BST
public void deleteNodeOfBST(int value) {
System.out.println("Deleting " + value + " from AVL Tree ...");
root = deleteNodeOfBST(root, value);
}


// Helper Method for delete
public BinaryNode deleteNodeOfBST(BinaryNode currentNode, int value) {
// THIS ELSE_IF BLOCK IS BST CONDITION
if (currentNode == null)
return null;
if (value < currentNode.getValue()) {
currentNode.setLeft(deleteNodeOfBST(currentNode.getLeft(), value));
} else if (value > currentNode.getValue()) {
currentNode.setRight(deleteNodeOfBST(currentNode.getRight(), value));
} else { // If currentNode is the node to be deleted
//System.out.println("currentNode is the node to be deleted");
if (currentNode.getLeft() != null && currentNode.getRight() != null) { // if nodeToBeDeleted have both children
BinaryNode temp = currentNode;
BinaryNode minNodeForRight = minimumElement(temp.getRight());// Finding minimum element from right subtree
currentNode.setValue(minNodeForRight.getValue()); // Replacing current node with minimum node from right subtree
deleteNodeOfBST(currentNode.getRight(), minNodeForRight.getValue());// Deleting minimum node from right now
} else if (currentNode.getLeft() != null) {// if nodeToBeDeleted has only left child
currentNode = currentNode.getLeft();
} else if (currentNode.getRight() != null) {// if nodeToBeDeleted has only right child
currentNode = currentNode.getRight();
} else { // if nodeToBeDeleted do not have child (Leaf node)
//System.out.println("This node is leaf node");
currentNode = null;
}
return currentNode;// if it is a leaf node,then no need to do balancing for this node, do only for its ancestors
}

// THIS IS WHERE WE WILL DO AVL SPECIFIC WORK
int balance = checkBalance(currentNode.getLeft(), currentNode.getRight());
if (balance > 1) {
if (checkBalance(currentNode.getLeft().getLeft(), currentNode.getLeft().getRight()) > 0) {
currentNode = rightRotate(currentNode);// LL Condition
} else {
currentNode.setLeft(leftRotate(currentNode.getLeft())); // LR Condition
currentNode = rightRotate(currentNode);
}
} else if (balance < -1) {
if (checkBalance(currentNode.getRight().getRight(), currentNode.getRight().getLeft()) > 0) {
currentNode = leftRotate(currentNode);// RR Condition
} else {
currentNode.setRight(rightRotate(currentNode.getRight()));// RL Condition
currentNode = leftRotate(currentNode);
}
}

if (currentNode.getLeft() != null) {
currentNode.getLeft().setHeight(calculateHeight(currentNode.getLeft()));
}
if (currentNode.getRight() != null) {
currentNode.getRight().setHeight(calculateHeight(currentNode.getRight()));
}
currentNode.setHeight(calculateHeight(currentNode));
return currentNode;

}// end of method


// Get minimum element in binary search tree
public static BinaryNode minimumElement(BinaryNode root) {
if (root.getLeft() == null)
return root;
else {
return minimumElement(root.getLeft());
}
}// end of method


void printTreeGraphically() {
Queue<BinaryNode> queue = new LinkedList<BinaryNode>();
Queue<Integer> level = new LinkedList<Integer>();

int CurrentLevel = 1;
boolean previousLevelWasAllNull = false;
queue.add(root);
level.add(1);

System.out.println("\nPrinting Level order traversal of Tree...");
if(root == null) {
System.out.println("Tree does not exists !");
return;
}

while (!queue.isEmpty()) {
if(CurrentLevel == level.peek()) { //if we are in the same level
if(queue.peek()==null) {
queue.add(null);level.add(CurrentLevel+1);
}else {
queue.add(queue.peek().getLeft());level.add(CurrentLevel+1);
queue.add(queue.peek().getRight());level.add(CurrentLevel+1);
previousLevelWasAllNull = false;
}
System.out.print(queue.remove() + " ");level.remove();
}else { //level has changed
System.out.println("\n");
CurrentLevel++;
if(previousLevelWasAllNull == true) {
break;
}
previousLevelWasAllNull = true;
}
}//end of loop
}//end of method

}// end of class