AVL Tree

Why AVL Tree?

  • Depending on Incoming data, A Binary Search tree can get skewed and hence its performance starts going down. Instead of O(log n) for insertion/searching/deleting it can go up to O(n)
  • AVL tree attempts to solve this problem of ‘skewing’ by introducing concept called ‘Rotation’.

What is AVL Tree?

  • An AVL tree is a balanced ‘Binary Search Tree’ where the height of immediate subtrees of any node differs by at most one(also called balance factor).
  • If at any time heights differ by more than one, rebalancing is done to restore this property(called rotation).
  • Empty height is always considered -1.

Algorithm of AVL Tree

  • create, search, traverse Algorithm is totally same as the BST.

Insertion of node in AVL Tree

  • Case#1 - Whene ‘rotation’ is not required.
    • The algorithm is same as the BST Insertion.
  • Case#2 - When ‘rotation is required(LL, LR, RR, RL).

Left-Left Condition

  • What is Left-Left condition?
    • Left-Left Node from currentNode is causing disbalance.
    • In this case we do a ‘Right Rotation’.

1
2
3
4
5
6
rightRotate(currentDisbalancedNode)
newRoot = currentDisbalancedNode.left
currentDisbalancedNode.left = currentDisbalancedNode.left.right
newRoot.right = currentDisbalancedNode
currentDisabledNode.height = calculateHeight(currentDisbalancedNode)
newRoot.height = calculateHeight(newRoot)

  • Time Complexity - O(1)
  • Space Complexity - O(1)

Left-Right Condition

  • What is Left-Right condition?
    • Left-Right Node from currentNode is causing disbalance.
    • In this case we do a ‘Left Rotation followed by Right Rotation’.

1
2
3
4
5
6
7
8
9
10
leftRotate(currentDisbalancedNode'sLeftChild)
newRoot = currentDisbalancedNode'sLeftChild.right
currentDisbalancedNode'sLeftChild.right = currentDisbalancedNode'sLeftChild.right.left
newRoot.left = currentDisbalancedNode'sLeftChild
currentDisbalancedNode'sLeftChild.Height = calculateHeight(currentDisbalancedNode'sLeftChild)
newRoot.Height = calculateHeight(newRoot)
return newRoot


rightRotate(currentDisbalancedNode) ------ left-left Condition이랑 같음

  • Time Complexity - O(1)
  • Space Complexity - O(1)

Right-Right Condition

  • What is Right-Right condition?
    • Right-Right Node from currentNode is causing disbalance.
    • In this case we do a ‘Left Rotation’.

1
2
3
4
5
6
7
leftRotate(currentDisbalancedNode)
newRoot = currentDisbalancedNode.right
currentDisbalancedNode.right = currentDisbalancedNode.right.left
newRoot.left = currentDisbalancedNode
currentDisbalancedNode.Height = calculateHeight(currentDisbalancedNode)
newRoot.Height = calculateHeight(newRoot)
return newRoot

  • Time Complexity - O(1)
  • Space Complexity - O(1)

Right-left Condition

  • What is Right-left condition?
    • Right-left Node from currentNode is causing disbalance.
    • In this case we do a ‘Right Rotation followed by Left Rotation’.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
rightRotate(currentDisableNode'sRight)
newRoot = currentDisableNode'sRight.left
currentDisableNode'sRight.left.right = currentDisableNode'sRight
currentDisableNode'sRight.height = calculateHeight(currentDisableNode'sRight)
newRoot.height = calculateHeight(newRoot)
return newRoot;

leftRotate(currentDisabledNode)
newRoot = currentDisabledNode.right
currentDisabledNode.right = currentDisabledNode.right.left
newRoot.left = currentDisabledNode
currentDisabledNode.height = calculateHeight(currentDisabledNode)
newRoot.height = calculateHeight(newRoot)
return newRoot

  • Time Complexity - O(1)
  • Space Complexity - O(1)

Insertion Algorithm in AVL Tree

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
Node Insert(Node root, int data)
if(root == null) return new Node(data)
else if(data <= root.data) root.left = insert(root.left, data)
else root.right = insert(root.right, data)

int balance = height(root.left) - height(root.right)
if(balance > 1)
if height(root.left.left) >= height(root.left.right)
RightRotation(root) //LL condition
else
LeftRotation(root.left)
RightRotation(root) // LR condition

else if(balance < -1) // if right subtree is overloaded
if height(root.right.right) >= height(root.right.left)
LeftRotation(root) // RR condition
else
RightRotation(root.right)
LeftRotation(root) // RL condition

root.height = max(root.left, root.right) + 1
return root

  • Time Complexity - O(log n)
  • Space Complexity - O(log n)

Deletion of Node from AVL Tree

  • Deletion of a node
    • Case#1 - When tree does not exists
    • Case#2 - When ‘rotation’ is not required(BST Conditions)
      • Node to be deleted is leaf node
      • Node to be deleted is having 1 child
      • Node to be deleted has 2 children
    • Case#3 - When ‘rotation’ is required(LL, LR, RR, RL)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
deleteNodeOfAVL(currentNode, valueToBeDeleted)
if(currentNode == null) return null;

if(valueToBeDeleted < currentNode.value)
then currentNode.left = deleteNodeOfAVL(currentNode.left, valueToBeDeleted)
else if(valueToBeDeleted > currentNode.value)
then currentNode.right = deleteNodeOfAVL(currentNode.right, valueToBeDeleted)
else //if the currentNode is the node to be deleted
if currentNode have both children, then find minimum element from right subtree(Case#3)
replace current node with minimum node from right subtree and delete minimum node from right

else if nodeToBeDeleted has only left child(Case#2)
then currentNode = currentNode.left
else if nodeToBeDeleted has only right child
(Case#2)
then currentNode = currentNode.right

else //if nodeToBeDeleted do not have child(Case#1)
currentNode = null;

int balance = checkBalance(currentNode.left, currentNode.right);

if(balance > 1)
if(checkBalance(currentNode.left().left(), currentNode.left().right()) > 0)
currentNode = rightRotate(currentNode); //LL Condition

else
currentNode.left = leftRotate(currentNode.left);
currentNode = rightRotate //LR condition

else if(balance < -1)
if(checkBalance(currentNode.right().right(), currentNode.right().left()) > 0)
currentNode = leftRotate(currentNode); //RR Condition

else
currentNode.right = rightRotate(currentNode.right); //RL condition
currentNode = leftRotate(currentNode);

if(currentNode.left() != null) then currentNode.left().setHeight(calculateHeight(currentNode.left));
if(currentNode.right() != null) then currentNode.right().setHeight(calculateHeight(currentNode.right());
currentNode.setHeight(calculateHeight(currentNode));

return currentNode;

  • Time Complexity - O(log n)
  • Space Complexity - O(log n)

출처 : “Data Structures & Algorithms” by DS GUY